ENVISION

Examining the business incentives for investments in coupled wind storage systems

Dr. Peter Enevoldsen

Dr. Peng Hou (DTU), Dr. Joshua Eichmann (NREL)

- Challenges mitigating renewable variations, challenges decarbonizing transportation sector
- Electrolysis are flexible loads that can be used to produce hydrogen and provide benefits to the electric grid
- The business incentives for storage applications
- Hydrogen can be sold to a variety of end uses
- Transportation offers unique benefits, particularly MD/HD because of ideal match with hydrogen for range and refill time.

Wind energy storage configuration based on hydrogen technologies

Apostolou & Enevoldsen, 2019

Power consumption DK1 — Electricity spot price DK1 — Wind power production DK1

3

Restricted© Envision Energy 2018. All rights reserved

- Varying electricity prices is a consequence of the global electrification and transition towards societies powered by renewables
- Price variations or volatility is partly due to renewable intermittency
- Various scientific proposals have included storage applications to 1) control the fluctuations, and 2) to optimize the business potential of wind farms.
- However, few, if any have adequately investigated the difference of storing electricity to apply it for different purposes

- Benchmark: Wind farm without any storage application
- Configuration 1 (P2P): Wind farm with P2H for electricity market arbitrage
- Configuration 2 (P2P+P2G) Wind farm with P2H for generating hydrogen
- Configuration 3 (P2P): Wind farm with P2B for electricity market arbitrage
- *P2H = Power-to-Hydrogen *P2B = Power-to-Batteries

The approach is inspired by Hou et al (2017)

- We will couple the sequential quadratic programming and the adaptive particle swarm optimization.
- The decision process can be simplified to follow the structure introduced in the figure.

Restricted© Envision Energy 2018. All rights reserved

Various scenarios were established and examined:

- Scenarios I: Power-to-Power (P2P) using Electrolyser and Fuel Cell
- Scenario II- IV: P2P and/or Power-to-Gas (P2G) depending on the electricity market and wind farm production
- Scenario V: P2P using lithium-ion Batteries
- * 2, 5 and 9€/kg for scenario II, III and IV, respectively

	Return on Invest- ment (years)	Total benefits in NPV (M€/yr)	Hydro- gen price (€/kg)	NPV of total profits from hydrogen market (M€/yr)	NPV of total profits from electricity market (M€/yr)	NPV of total cost of energy from electricity market (T€/yr)	NPV of electro- lyzer cost (M€)	NPV of storage cost (T€)	NPV of fuel cell cost (M€)	NPV of O&M cost (T€/yr)
Benchmark	/	4.15	/	0	4.15	0	/	/	/	/
Scenario I	Inf	4.15	0	0	4.15	0	0	0	0	0
Scenario II	24.4	4.61	2	0.47	4.14	2.71	5.72	14.38	/	178.4
Scenario III	5.5	7.02	5	2.91	4.11	7.65	12.63	27.87	/	397.3
Scenario IV	<u>2.6</u>	<u>13.13</u>	9	<u>9.10</u>	4.02	<u>42.33</u>	<u>20.82</u>	<u>46.71</u>	/	<u>658.5</u>
Scenario V	6.1	4.61	/	/	<u>4.61</u>	/	/	0.04	/	/

- Focus on opportunity for goods movement in Europe/U.S.
 - Most trade with a given country/region happens within that country/region

Hydrogen Fuel Cell Toyota, Nikola Toyota ~ 200 miles Nikola ~ 1200 miles (2020) Battery Electric Tesla, Cummins, Thor Lower cost of ownership No emissions ~300 - 500 mile range

Wide range of vehicle types and classes

- There is a need to understand how the delivery pathways of electrolyzed hydrogen would impact the business case.
- What happens when considering ancillary grid services (Could we establish a business case only by reducing grid penalties)?
- Batteries can still be considered a vital gateway technology, and furthermore very applicable if the target is P2P
- What about offshore wind farms?
- Should storage technologies be considered in wind turbine control design?

WINA	IIIrninae'				
VVIIIU					

Electrolyzer:

Fuel Cell:

Battery:

Туре	Custom WTG							
Cut-in Wind Speed	3 m/s							
Rated Wind Speed	17 m/s							
Cut-out Wind Speed	25 m/s							
Rotor Diameter	110 m							
Rated Power	3.5MW							
Туре	Alkaline Alkaline PEM (2015							
Producer	NEL Atmospheric pressure (S1)		HYDROGENICS (S2)		Proton Onsite (S3)			
Plant size (MW)	10	100	10	100	10	100		
Average System Efficiency during lifetime (kWh/Nm ³)	4.9	4.9	5.5	5.5	6.1	6.1		
Technical lifetime (years)	25	25	25	25	25	25		
Turnkey price (Million Euro)	9.30	84.03	17.20	148.64	9.65	64.08		
Total O&M including stack exchange / 7 th year (Thousand Euro)	510.67	4840	1297.33	12396	174.67	1162.67		
Туро		Proton ex	change me	mbrane fuel (المح		l	
Canacity (kWe)								
Technical lifetime (year)	15							
Annual average electric efficiency (%								
LHV)	35							
						1		
Туре	lithium-ion							
Capacity (MW)	10							
Technical lifetime (year)	20							
Average charging efficiency (%)	90							
State of charge (SOC) lower limit (%)	10							
State of charge (SOC) upper limit (%)	90							
Battery cost (\$/kWh)	273							
							2	

Thank you!

Solving the Challenges for a Sustainable Future!

Dr. Peter Enevoldsen