

FCH JU Support to Electrolysis in view of 2050 Decarbonisation Targets

> Nikolaos Lymperopoulos

ETIP Wind Workshop *Brussels, 21st February 2019*

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Strong public-private partnership with a focused objective

EU Institutional Public-Private Partnership (IPPP)

To implement an *optimal research and innovation programme* to bring FCH technologies to the point of market readiness by 2020

FCH JU programme implementation

Energy

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power & combined heat & power generation

Transport

- **Road vehicles**
- Non-road vehicles and machinery
- **Refuelling infrastructure**
- Maritime rail and aviation applications \bigcirc

Cross-cutting

E.g. standards, safety, education, consumer awareness ...

 $\supset \zeta$

244 projects supported for 893 M€

Similar leverage of other sources of funding: 892 M€

Hydrogen for Sectorial Integration

Well-positioned FCH JU objectives & budget

Increase efficiency and reduce costs of H₂ production, mainly from water electrolysis and renewables

M£

102

Related FCH JU Objectives

Demonstrate on a large scale H₂'s capacity to harness power from renewables and support its integration into the energy system

Hydrogen Production Technical Coverage

95% of FCH JU support to green Hydrogen production

Electrolysis Research and Demonstration

The potential of Hydrogen for the greening of industry has lead to fast capacity increase and cost reduction

Electrolysers, M€ FCH JU support

31 Projects

2016: Greening the Steel Industry

The H2Future Project: Producing green H₂ from hydro power, Injecting in steel industry, providing grid services

Co-ordinated by Verbund (electricity company of Austria) 6MW PEM atmospheric electrolyser by Siemens Installed in voestalpine (steel industry) in Linz H₂ injected in coke oven gas. Long term view is **direct iron ore reduction through H2** Favourable electricity tariffs in Austria for electrolysers Steel industry a great proponent of green H₂ at Commission level

FUTURE Green Hydrogen

2016: Greening the Food Industry

The Demo4Grid Project: Producing green H2 from hydro power, combustion in boiler of food industry

Hosted by Mpreis (food industry, lirol) 4MW alkaline electrolyser by IHT H₂ 4 Heat, H2 4 Transport **TRL 6-8**

Pressurized ALK (approx. 4 MW power intake; 1.840 kg $H_2/day @30 bar)$

Buffer storage @ 30 bar, 300 m³

Thermal usage of H₂ in bakery/production plant (H₂-burner, 2MW) Efficiency >95% ELY thermal energy production is utilized

2017: Greening the Refining Industry

The Refhyne Project: Producing green H₂ from renewables, displacing grey SMR hydrogen

- 10MW PEM electrolyser by ITM Power installed in Shell refinery in Wesseling, Germany
- 3 A/cm², 30bar
- H₂ fed to existing pipeline grid and load balancing services
- Displacing 1% of 180,000 tons annual consumption

9

Greening the Refining Industry

Green H₂ attractive for refineries in terms of CO2 avoidance costs

BP Europa SE

Ref: Enno Harks, **BP Europa SE**

bp

Developed with an industry coalition – Available @ www.fch.Europa.eu

- Study by the FCH JU, supported by Hydrogen Europe and 17 companies and organizations along the whole value chain of hydrogen
- First comprehensive quantified European perspective for deployment of hydrogen and fuel cells in two scenarios
 - Ambitious, yet realistic two-degree scenario and business-as-usual scenario
 - Long-term potential
 - Roadmap with intermediate milestones
 - Recommendations to kickstart

Managing variable renewables requires H₂

H₂ and FCs meet customer preferences

Hydrogen and fuel cells are compatible with

Hydrogen is the best or only choice for at-scale decarbonization of key segments

2 DS = degree scenario

SOURCE: IEA Energy Technology Perspectives 2017; Hydrogen Roadmap Europe team

Hydrogen can close half of the gap towards 2DS

Hydrogen decarbonization levers

g (DRI) anol, ()		Power generation	 Integration of renewables into the power sector² Power generation from renewable resources
		Transportation	 Replacement of combustion engines with FCEVs, in particular in buses and trucks, taxis and vans as well as larger passenger vehicles Decarbonization of aviation fuel through synthetic fuels based on hydrogen Replacement of diesel-powered trains and oil-powered ships with hydrogen fuel-cell-powered units
		Heating and power for buildings	 Decarbonization of natural gas grid through blending Upgrade of natural gas to pure hydrogen grid
		Industry heat	 Replacement of natural gas for process heat
		Industry feedstock	 Switch from blast furnace to DRI steel Replacement of natural gas as feedstock in combination with CCU

12-degree scenario 2 Please see the chapter on renewables and power for information on the role of hydrogen as enabler of a renewable power system. The "enabled" carbon abatement from renewables is not included here and is

Besides CO₂ abatement, deployment of H₂ also cuts local emissions, creates new markets and secures sustainable employment in Europe

2050 hydrogen vision

of final energy demand¹

annual CO_2 abatement² annual revenue (hydrogen and equipment)

1 Including feedstock 2 Compared to the reference technology scenario 3 Excluding indirect effects SOURCE: Hydrogen Roadmap Europe team

~15%

~5.4m

reduction of local emissions (NO_x) relative to road transport

jobs (hydrogen, equipment, supplier industries)³

Summary

Sectorial integration, Energy storage, Decarbonizing industry & the Gas grid: mainstream energy policy terms

H₂: important component for deep decarbonisation – Electrolyser: key technology

FCH JU: continuous support of Industry and Researchers in moving electrolysers from kW to MW, improving performance & reducing costs

A recent H_2 roadmap concludes that by 2050 H_2 techs can cover 24% of the total energy demand, reducing CO₂ by 560Mtn/a and creating 5.4M jobs in the EU

17

Nikolaos Lymperopoulos

Project Officer Nikolaos.Lymperopoulos@fch.europa.eu

For further information

www.fch.europa.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

