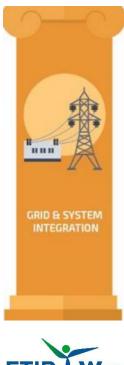


EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

Technology roadmap

Table of content (indicative)

- 1. Introduction
- 2. Wind in the energy transition what are the scenarios
- 3. R&I impact and policy context
- 4. Rationale for the roadmap in relation to SRIA
- 5. How does it compare to older / other roadmaps
- 6. Content per pillar
- 7. Implementation



EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

Pillars and priorities

Grid & system integration

EUROPEAN TECHNO PLATFORM ON

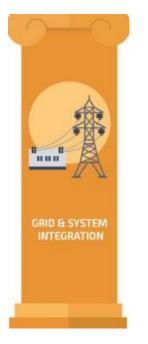
Challenge: Demonstrating adaptability of wind

- Demonstration of system services.
- Empower TSO/DOS to match wind power production and consumption
- Increase accuracy in communication and forecasting of demand.
- Increase flexibility in power production/dispatch.

		Short term	Medium term	Long term
SYSTEM RATION	High criticality	Integrated forecasting of power production and power demand	seasonal storage Phase II (Wind + P2X)	/
		Storage (Wind + battery) (e.g. for power firming)	Sustainable hybrid solutions (Solar PV, other RES?)	
-	Medium criticality	seasonal storage phase I (Wind + P2X)	System services: flexibility, black start, VAR support	/
Wind	Low criticality	Power quality Low & high wind speed combined wind farm concepts	/	/

Grid & system integration

EUROPEAN TECHNOLOGY & INNOVAT PLATFORM ON WIND ENERGY


Challenge: Towards a system fit for RES

- Grid structure and operating principles/models.
- Grid technology HVDC/MVDC and HVAC/MVAC.

		Short term	Medium term	Long term
	High criticality	Synergies with other RES	Optimising the utilisation of the current grid infrastructure (inflexibility)	Stable system with 100% RES
	Medium criticality	/	Cost-efficientoffshoretransmissionandelectricalinfrastructure	/
TION	Low criticality	System modelling	/	/

Grid & system integration

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON WIND ENERGY

Non technical barriers

- EU wide long term energy policy on EU and national levels
- Harmonisation of regulation across the EU
- Sector coupling (electrification) to improve demand side management
- PPA's
- Planning of grid infrastructure

Operations & maintenance

ETIP

Vind

Challenge: optimising operations

- Improve forecasting of environmental conditions.
- Enhanced control (wind farm<>wind turbine).
- Improved understanding of the asset.

			Short term	Medium term	Long term
OPERATIONS & MAINTENANCE		High criticality	Lifetime assessment and condition monitoring (wear & tear of materials)	Digital solutions for smart operations	/
_			Digital tools for control and monitoring	Prediction of environmental parameters (including climate change effects)	
	d	Medium criticality	/	Solutions for operating in extreme environment (e.g. icing)	/
ATFORM ON WIND ENER		Low criticality	/	/	/

Operations & maintenance

Challenge: Increasing energetic availability

- Limit human intervention.
- End of life decisions.
- Logistics and installation.

		Short term	Medium term	Long term
IS NCE	High criticality	/	Dynamic cables repair solutions	Floating installation methods for Offshore
Wind	Medium criticality	Electronic inspection methods (drones, rope robotics, AUVs)	Decommissioning technology	/
GY & INNOVATION ND ENERGY	Low criticality	Site accessibility	/	/

Operations & maintenance

Non technical barriers

- Harmonisation of end of life & HSE
- Loosen up and reasonability of permitting rules and adaptation of new research results
- Transportation rules
- Education of general public on wind energy
- Cumulative environmental impact assessment

PLATFORM ON WIND ENERGY

Next generation technologies

NEXT

Challenge: cost competitiveness of EU Wind industry

- Keeping wind cost competitive vs other power generation in EU.
- Support position of EU companies on the global market.
- Retain long term technology leadership of EU industry.

		Short term	Medium term	Long term
NEXT GENERATION TECHNOLOGIES	High criticality	Development and validation of S new components and materials (weight reduction, strength,	Standards	/
	flexibility, corrosion, erosion, N recyclable)	Manufacturing processes		
ETIP Wind	Medium criticality	New transportation methods for large components.	Sensor technologies, diagnostics & response	Disruptive technologies
EUROPEAN TECHNOLOGY & INNOVAT PLATFORM ON WIND ENERGY	10		Reliability of components (reduce downtime)	
ETIP	Low criticality	/	/	Next generation generators.
, EUROPEAN TECHNOLOGY & INNOVAT	criticality	New transportation methods for	response Reliability of components (reduce	

Next generation technologies

PLATFOR

Challenge: A 100% sustainable wind energy sector

- Facilitate the integration of larges shares of wind energy in the natural and social environment.
- Develop sustainable/circular wind energy supply chain and economy.

		Short term	Medium term	Long term
NEXT ENERATION CHNOLOGIES	High criticality	Integrate wind energy in the surrounding natural and social environment.	Development of sustainable materials.	Recycling methods for materials and components.
		Blade recycling demonstration		
P Wind	Medium criticality	/	Noise reduction Industry transparency	/
ECHNOLOGY & INNOVA RM ON WIND ENERGY	ATION LOW	/	/	/

Next generation technologies

Non technical barriers

- Recycling of components and materials ۲
- **Existing IEC standards** ullet

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON WIND ENERGY

Offshore balance of plant

Challenge: Common methodology for integrated offshore wind farm design and development

- Development of engineering design *tools* (for all components & aspects)
- Common procedure for validation and availability of data architecture
- Optimisation loop for integrating multidisciplinary design *tools*

		Short term	Medium term	Long term
RE IE IT	High criticality	/	 Common procedures & standardisation for model validation 	/
	Medium criticality	 Map out and harmonise design process parameters and models Data availability and sharing 	Synergistic development of design tools	 Industry wide methodologies standards
	Low criticality	/	/	 Creating innovative pathways for model design

PLATFORM ON WIND ENERGY

FUROPEAN TECHNOLO

Offshore balance of plant

EUROPEAN TEC PLATFOR

Challenge: Installing large offshore volumes

- Studies & analysis of innovative substructure design (incl. modularisation decommission and environmental aspects, economic viability, cross-over with bottom fixed)
- Integrated design process
- Standardisation

		Short term	Medium term	Long term
FFSHORE BALANCE OF PLANT	High criticality	Site conditionsCabling and connection	 Installation procedures and logistics (including port infrastructure) 	 Cross-industry agreement and standards Integrated optimised design plan
	Medium criticality	 Floating/gravity based concepts 	 Serial production – analysis of substructure production processes 	/
P Wind	Low criticality	/	New concepts for shallow waters	 Lifetime of support structures (repurpose of offshore monopoles) Supply chain logistics - decommissioning

Offshore balance of plant

Non technical barriers

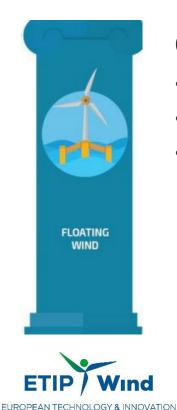
PLATFORM ON WIND ENERGY

etipwind.eu

ore

Standards are not harmonised (repaint, chiadon lights, HS, maintenance)

Floating Offshore Wind


Challenge: Serial production

- Scalability (tower, main flange, aero-hydrodynamics, integrated capabilities)
- Design tools (validation & model testing, control panel, probabilistic design)
- Concept development (extending the library)

		Short term	Medium term	Long term
	High criticality	Validation of Design tools	Concept development suited to scalability	/
	Medium criticality	/	Integrated design process in supply chain	/
nd NOVATION ERGY	Low criticality	/	/	Extending the library

Floating Offshore Wind

PLATFORM ON WIND ENERGY

Challenge: Floating wind farms

- Mooring, anchoring and cables.
- Park level control.
- Park footprint.

	Short term	Medium term	Long term
High criticality	Mooring & anchors dynamic electric cables.	/	/
	Control methods		
Medium criticality	/	Park footprint	Park level control
Low criticality	/	Floating to floating installation & assembly	/

Floating Offshore Wind

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON WIND ENERGY

Human resources

ETI

Challenge: Attracting & ret(r)aining talent in Europe

- Make attracting talent part of EU-funded projects.
- Development of a strategic approach to organising educational programmes.
- Share best practices for modularised continued education

	Short term	Medium term	Long term
High criticality	/	Developing a strategic wind programme (master & phd)	Retraining existing wind force
			Secure a number (tbc) of students move into industry (local & global)
Medium	/	Develop specific skillsets	Generating knowledge across topics (energy mechanics, electrical engineering)
criticality		Joint academia-industry educational programmes	
Low criticality	/	/	/
Wind			etipwind.

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

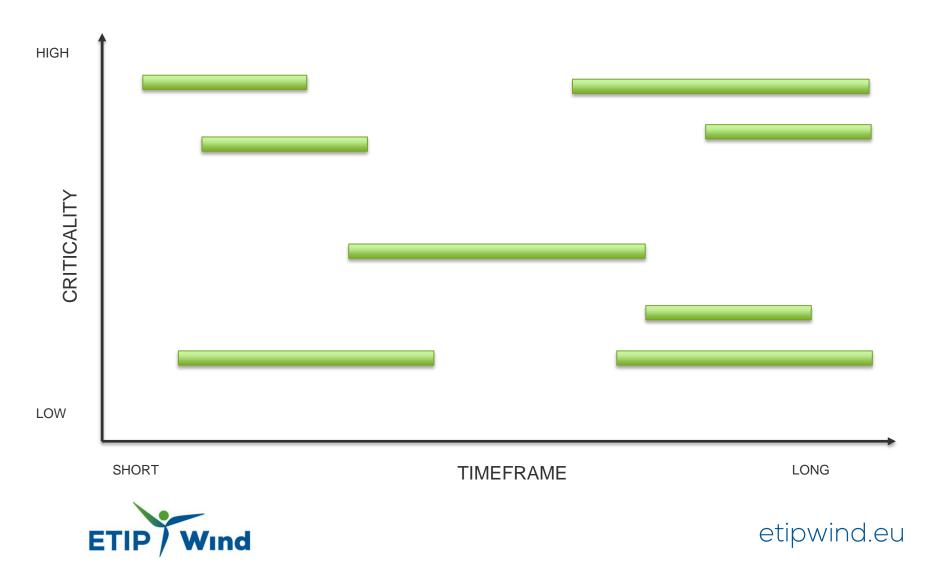
Visualisation of the priorities (indicative)

PILLAR NAME

Feugait splendide quaerendum in mea, reque simul impedit per ea, ei usu diceret minimum scaevola.

Non technical barriers

Mei cu dolor constituam, ut erat nobis contentiones usu. Eam te illum alienum, cu ius probatus voluptatum deterruisset. Altera iudicabit sit ad. Et rebum assentior intellegebat mea, hinc expetenda ei has.


Challenge 1

Duo in partem fuisset conceptam. In animal erroribus assentior nec. Eligendi voluptua et vix, te homero efficiendi his, an est quod perfecto intellegam. Ius ea omittam deterruisset.

Challenge 2

Duo in partem fuisset conceptam. In animal erroribus assentior nec. Eligendi voluptua et vix, te homero efficiendi his, an est quod perfecto intellegam. Ius ea omittam deterruisset, quo ea veri prompta.

	Help required	TITLE		TIMING Short/medium/long	CRITICALITY
Lat ele at, Duo der cor Vix Eu	ine oporteat usu ad. Ea ifend antiopam dissentio per oportere constituan o dolorem perpetua app nocritum eam. Persecut nplectitur. Ut amet saep at eros intellegam. vel graeci meliore reprir	THE PRIORITY qui numquam petentium. Eret, porro tempor vel eu. Sea n te, placerat scriptorem ulla pellantur ea. Cu vis magna sa ci scribentur et ius, vis et and pe decore vim, ex vix nomina nique, oporteat incorrupte ad usu, affert intellegam ne o te.	MILESTONES Melius expetenda ex sed, e repudiandae. Id nec ponder melius labitur. Ius oportere vocent ea per, percipit sens indoctum id vix. Ad eum Iup Eos sint eros eu. No nec gra harum Iucilius, ex sed asser adversarium. Ut vix oratio p platonem, amet stet te per	rum erroribus, ne has pertinacia te. Enim oratio serit id qui. Epicurei otatum vituperatoribus. nece luptatum. Eos in ntior consetetur putent, ad vis enim	
IN	1PACT CRITERIUM	IMPACT CRITERIUM 2	IMPACT CRITERIUM 3	FUNDING More private/more public	WHO LEADS Industry/academia/other

Technology Roadmap - example

Disruptive technologies			Long term	Low
The wind energy sector is continuously looking to develop more efficient and cost effective systems that harvest wind energy sector. Researching out of the box technical solutions in rotors, generators and even the entire wind turbine concept should be a continuous. Whilst research in this field will not lead to immediate cost reductions, their long term benefits are undeniable.			MILESTONES 10 peer reviewed papers o innovations 3 prototypes developed 1 commercial pilot project	n radical wind energy
	GRID INTEGRATION	EU LEADERSHIP	FUNDING	WHO LEADS

