The ReCoVeR Project

Towards a Cost-Effective Recycling Process for End-Of-Life GRP and GRP Manufacturing Waste

Jim Thomason & Liu Yang

Advanced Composites Group University of Strathclyde Glasgow, Scotland

ETIP Wind workshop, May 4, 2021

Global End-of-Life Blade Material

Reinforcement Glass Fibre Global Demand

Reinforcement Glass Fibre Global Demand

Available ReCoVeRable Glass Fibre in GRP?

Total Available ReCoVeRable Glass Fibre ?

Total Available ReCoVeRable Glass Fibre ?

GRP Recycling Techniques

The ReCoVeR Vision

The ReCoVeR Project

Engineering and Physical Sciences Research Council

<u>Regenerated</u> <u>Composite</u> <u>Value</u> <u>Reinforcement</u>

The ReCoVeR Mission 2010-2018

Enable the development of <u>cost-effective</u>, <u>drop-in</u>, glass fibre and composite products based on recycled glass fibres with regenerated mechanical performance

The ReCoVeR Goals

- Research fundamentals of (300-600°C)RGF property changes
- Cost effective treatments to regenerate RGF performance ?
- Develop in-house fluidised bed recycling technology
- Produce examples of GF or composite products using RRGF

ReCoVeR and E-Glass Formulation

Example of GRP Circularity

Recovered glass fibres

Wet mix with PP fibre

ReCoVeR Composite Performance

Wet Laid 30% RGF-PP GMT

Results on ReCoVeR Fibres in <u>30% RGF-PP Composites</u>

89% ReCoVeRy of Composite Tensile Strength

87% ReCoVeRy of Unnotched Charpy Impact

- Non-optimized sizing on ReCoVeR fibres
- Higher potential ReCoVeRy performance to come
- Patent Application submitted

Example of Wind Blade Recycling and Reuse

End of life GRP blade material

New 3kW turbine blade

Commercial wind blade, wt. = 1.93 kg

RGF blade prototype, wt. = 1.82 kg

- RGF blade prototype from wind blade scrap
- Commercial blade supplied by Kingspan Wind

Bending test showed RGF blade behaved similarly to commercial blade

Conclusions

- The composites community needs an environmentally and economically acceptable solution to deal with GF and GRP manufacturing waste and end-of-life GRP
- Glass fibres lose their strength if heated above 400°C
- Thermal conditioning of fibres during recycling also drastically reduces end-use composite performance
- The ACG is developing treatments to ReCoVeR the strength (*and value*) of thermally recycled glass fibres

Future Outlook

- ACG is developing cost-effective composites recycling technology and continues the technology development
 - Catalysed removal of matrix at reduced temperatures
 - Recovery of matrix polymer value Dynamic Hybrid Pyrolysis (DHP)
 - Research better/cheaper treatment options
 - LCA of ReCoVeR process
 - Economic analysis

Future Outlook

- Integration of ReCoVeR technology into full recycling/regeneration/reuse process - requires
 - Formation and funding of consortium of vested interests
 - Scale-up to pilot facility

PRoGrESS

(Products from Recycled Glass fibre at Economic and Sustainable Scale)

https://www.strath.ac.uk/engineering/mechanicalaerospaceengineering/advancedcompositesgroup/

