

ETIPWind Steering Committee Meeting

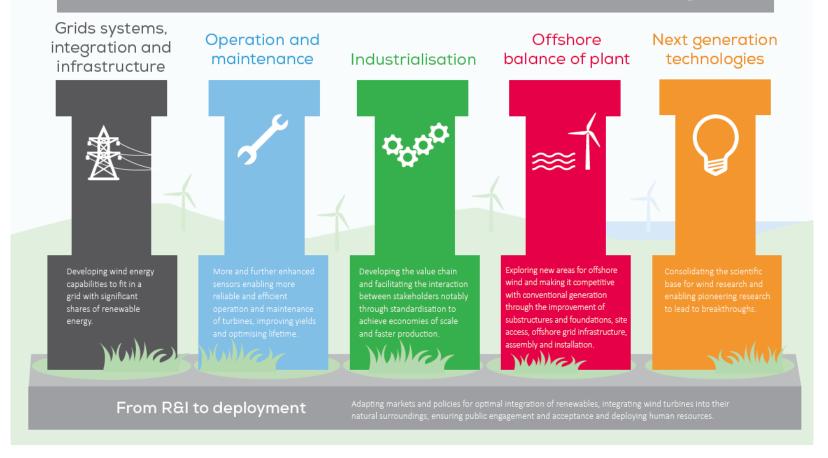
MARCH 14 2016

Task Force presentation

Agenda	
10:00 - 11:00	 Task Force – presentation Each Task Force give a 5- 7 min. presentation of the topics they have developed to the European Commission
11:00 - 12:00	 Marketing and policy push - presentation Policy push of the Strategic Research and Innovation Agenda. ETIPWind secretariat give a status on the marketing and policy push given on transnational level; Each SC member give a 2 min. report on the marketing and policy push they have executed.
12:00 - 12:30	 ETIPWind team in WindEurope Presentation of the online marketing on Twitter and LinkedIn Presentation of the ETIPWind events for 2017
12:30 - 12:40	ETIP SNET update + Combined renewable initiative
12:40 - 13:30	Lunch
13:30 - 14:30	 ETIPWind Work Programme 2017 – Deliverables ETIPWind Work Programme 2017
14:30- 15:00	ETIPWind Terms of Reference – approval
15:00- 15:30	ECOfys
15:30- 15:45	Meeting dates in 2017 and AOB

Commissions feedback

- What happened the 21st November?
- Where in the H2020 WP processes are the Commission now?
- What now?



etipwind.eu/sria

5 Pillars of research and innovation for wind energy

Grid systems, integration and infrastructure

In depth models of procurement strategies for ancillary services from renewables going forward to facilitate a cost effective integration of renewables

In depth technical and economic study for delivery of ancillary services throughout the entire value chain including technologies to be deployed and market value of these services

Integration of offshore meshed grids in the power markets to optimise technical solution and market value integration of offshore meshed grids in the power markets

Technical testing of Power grids with low rotational inertia to challenge current norms

Develop modular offshore grid infrastructure enabling lower cost installation

Energy Management Systems (EMS) with high RES penetration to optimise delivery and storage of electricity

Operation and maintenance

New large bearing and new large single component testing, failure analysis, leading to optimised redesign

Applied real-time analytics to improve reliability of components and predictability of failures

Enhanced intelligent sensor systems for improved performance measurement and condition monitoring

Improved operation and maintenance planning and decision-making thanks to big data analytics coupled to common logistical coordination between different actors thus reducing cost considerably offshore and onshore

End-of-life and lifetime extension strategies for wind turbines leading to best environmental solutions

Improvement in the highly complex field of generator failure analysis, testing leading to improved design and reliability

Industrialisation

Development of cost reducing design standards for subcomponent testing of rotor blades

Development of cost reducing design standards for fatigue and testing of fiberreinforced plastics as used in rotor blades

Harmonisation of key offshore regulation to reduce cost of offshore wind power and encourage best practice outside of Europe

Recycling and life extension of electronic components

Development and testing of more robust and reliable wind-power specific power semiconductor converter and other primary components

Development of and real time modelling of optimised standards for offshore medium-voltage DC power collection and for other major components to foster newer more reliable technology

Harmonisation and optimisation of regulation for wind turbine transportation on road, sea and rail and optimisation and streamlining of installation systems to insure lower direct and indirect costs

Offshore balance of plant

Floating offshore wind farms – solutions for the biggest cost and design challenges

Offshore site characterization for improved design basis, and optimised spatial planning and installation

Development of next generation low loss and reliable electrical infrastructure within offshore wind farms

Development of much more reliable affordable, innovative and industrialised offshore cables including new tech rapid repair systems

Standardised innovative foundation design to reach a one design can be adjusted to all sites thus reducing foundation coat dramatically

Operational control and maintenance

Offshore wind farm for research and innovation

Next generation technologies

Better testing of current composite material and development, testing of new and improved composite materials, and optimised structural design and manufacturing for turbine blades thus optimising strength, lifetime and attributes

Better testing of current metallic components substructures and development of new and testing of new metallic structures leading to optimised design, materials and optimised manufacturing for substructures (towers and foundations)

Development and testing of next generation cold climate and warm climate version wind turbines

Development and testing next generation high-accuracy-yet-affordable wind turbine, blade and controller design tools concepts

Development and applied testing of aerodynamic and aero acoustic design methods to deliver next generation efficiency

Development and testing of next generation High Temperature Superconductor wind generators to dramatically reduce the weight and increase the efficiency of large MW machines

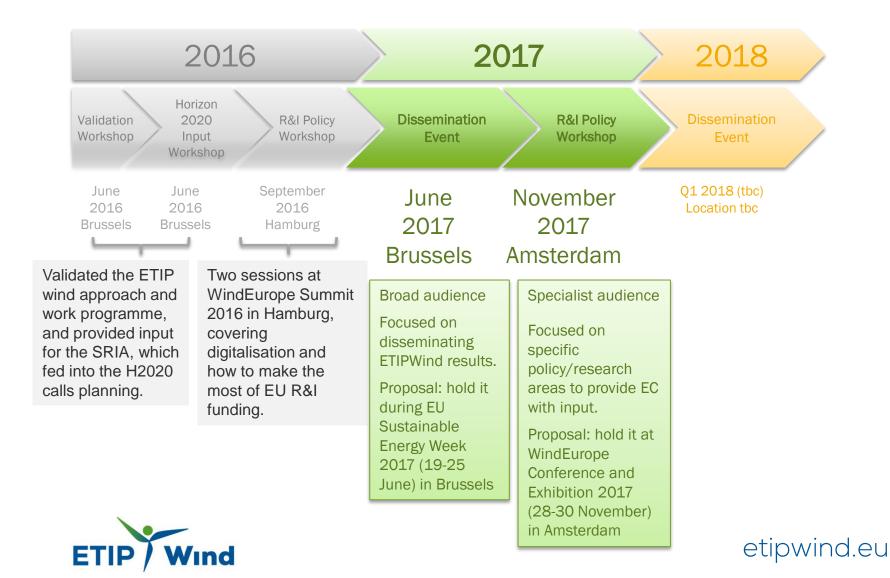
Next leap in design and manufacture of wind turbine blades

Site class specific designs for stretched rotors – increasing the capacity factors

Marketing and policy push

Marketing and policy push – Presentation

ETIPWind team in WindEurope



ETIPWind events in 2017

Lorenzo Morselli Conference programme manager etipwind.eu

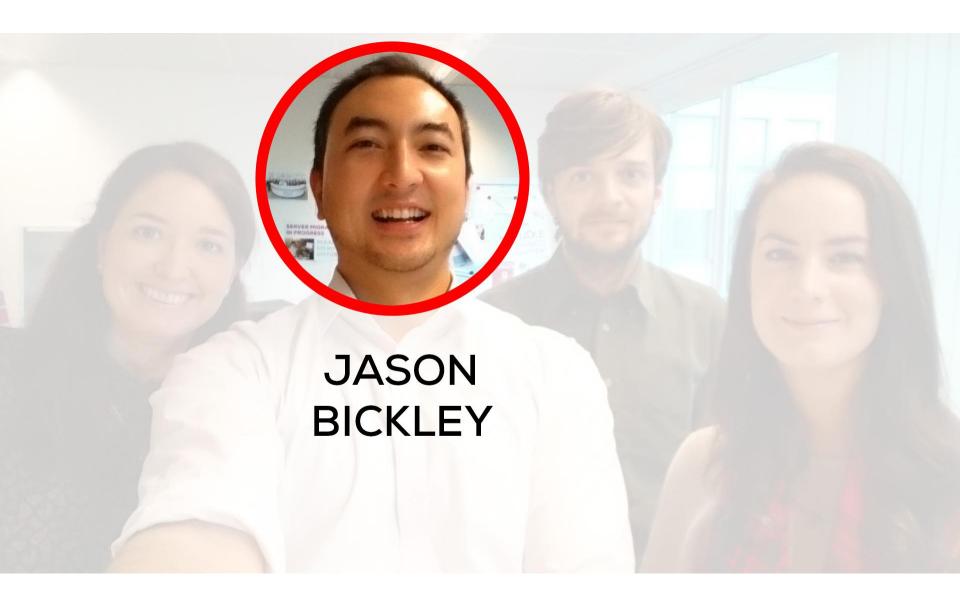
December 2016

ETIPWind events overview

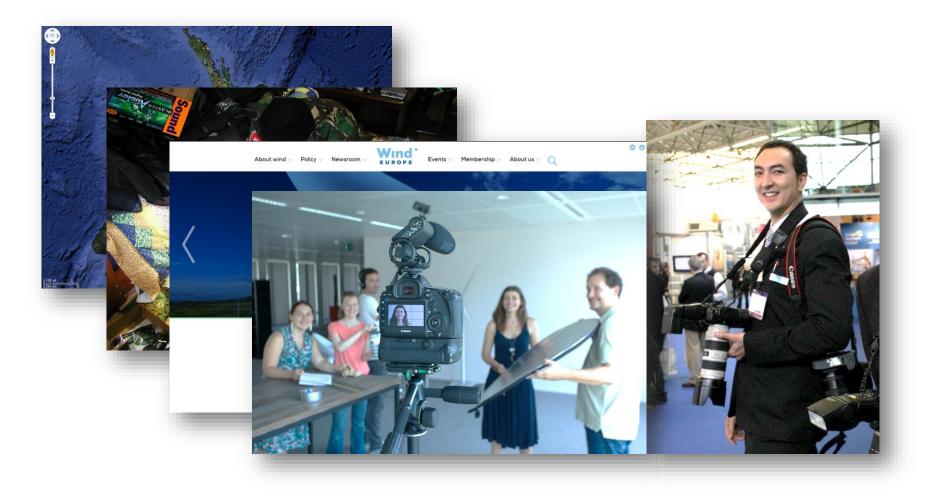
ETIPWind events overview

WindEurope Marketing Team 🙄

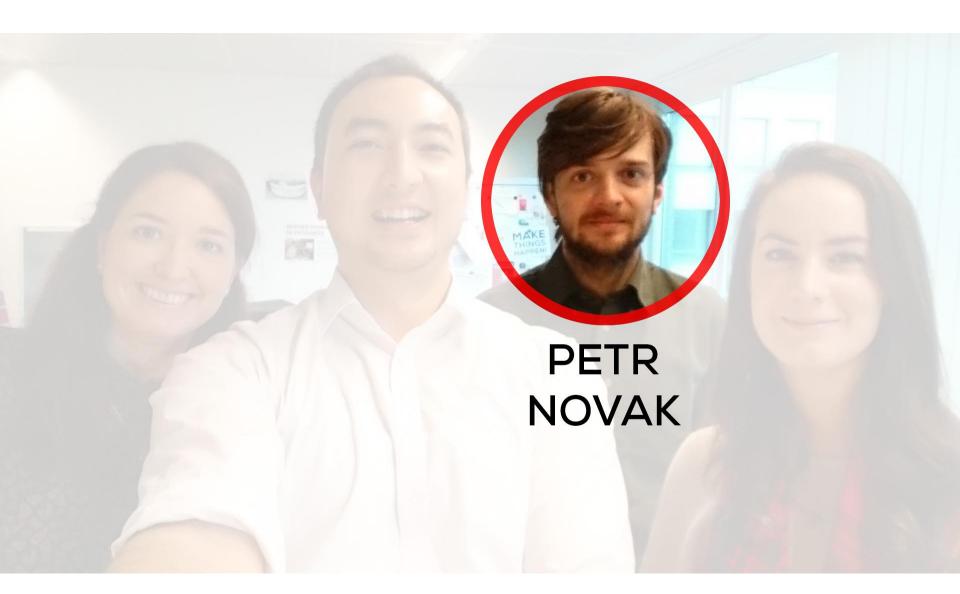
Jason Bickley

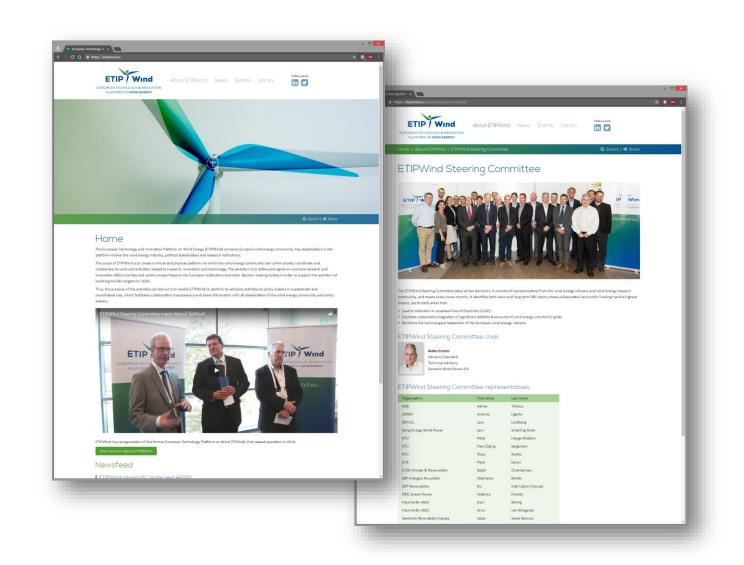

windeurope.org

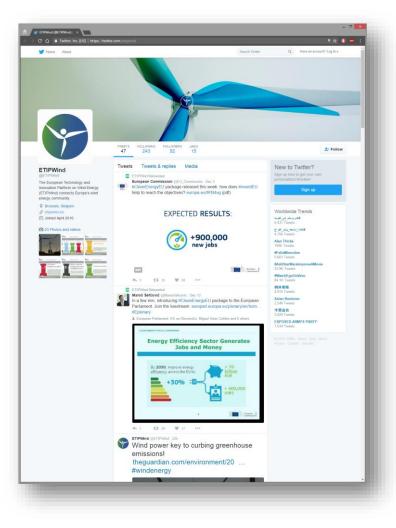
Dec 2016



This is the WindEurope Marketing Team!







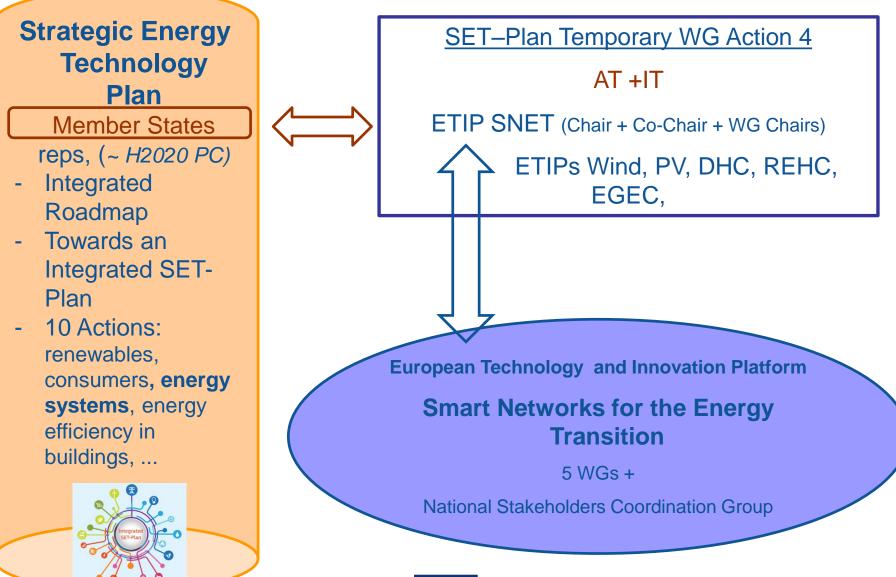
ETIP | Wind

THANK YOU

Remember the hashtag! #ETIPWind

Wind' EUROPE

windeurope.org


WindEurope, Rue d'Arlon 80 1040 Brussels, Belgium

ETIP SNET update + Combined renewable initiative

SET Plan Temporary WG Action 4

ETIPWind Work Programme 2017

General delivery of virtual and digital services

ETIPWind will continuously operate on virtual and digital platforms in order to increase transparency, communication and coordination.

The main virtual and digital platforms will be:

- ETIPWind website (www.etipwind.eu)
- Twitter (https://twitter.com/etipwind)
- LinkedIn (https://www.linkedin.com/groups/8512829)

Input into research and innovation processes

 ETIPWind will input to documents initiated by DG ENER, DG CLIMA, DG R&I, the SET-Plan Steering Group and the Working Group for offshore wind in order to influence their decisions, aligning the programming and implementation of R&I priorities on wind energy which ensure cost reductions and maintaining global leadership on wind energy in the short, medium and long-term

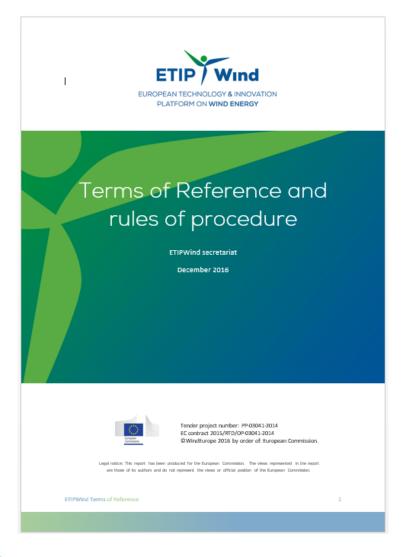
Workshop and conferences

The ETIPWind Steering Committee will participate in the development of content, provide speakers and general marketing of the event to secure relevance.

If possible, workshops/conferences foreseen in 2017 will be held during:

- European Sustainable Energy Week in Bruxelles;
- Wind Europe Annual Event in Amsterdam

High-level meetings


• ETIPWind will host at least two high-level stakeholder meeting during 2017 where key decision makers from the industry, academia, governmental institutions and European Institutions will gather and discuss research and innovation related topics.

ETIPWind Terms of Reference

ETIPWind Terms of Reference – approval

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

sustainable energy for everyone

DG Energy - Support to EU wind energy technology development and demonstration, with a focus on cost competitiveness and smart integration

Draft results ETIP Wind

15/12/2016 Heleen Groenenberg **Background:** European Commission is committed to a further upscaling of wind energy technology

Key challenges: a reduction of costs, grid integration, life extension and end-of-life strategies, (lack of) synergies between test facilities, and non-technological risks, impacts

Project objective: to support the EC in assessing, programming, implementing and monitoring technology development and demonstration for wind energy

Focus: challenges for cost reduction and grid integration in the short and medium term, both for on and offshore wind energy

DG Energy – Study Wind Energy Technology Timeline, stakeholder consultations

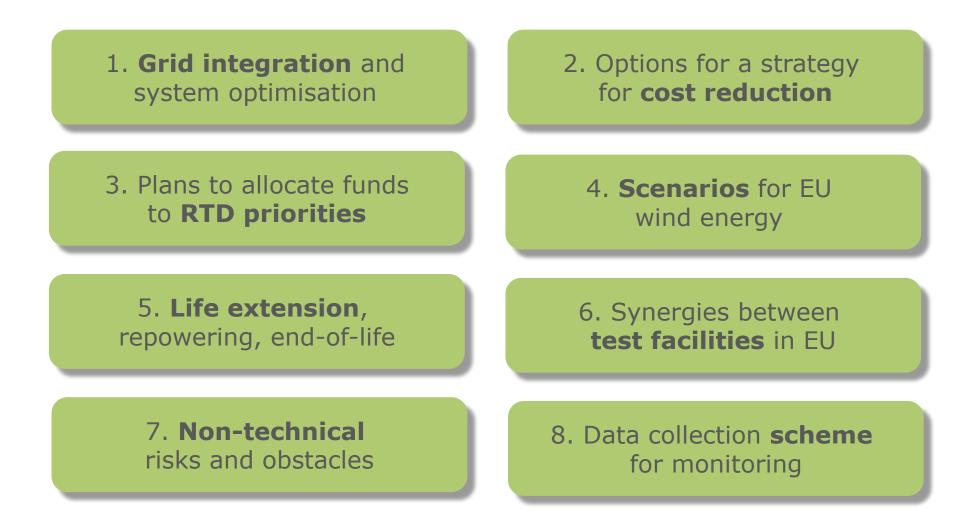
Project duration

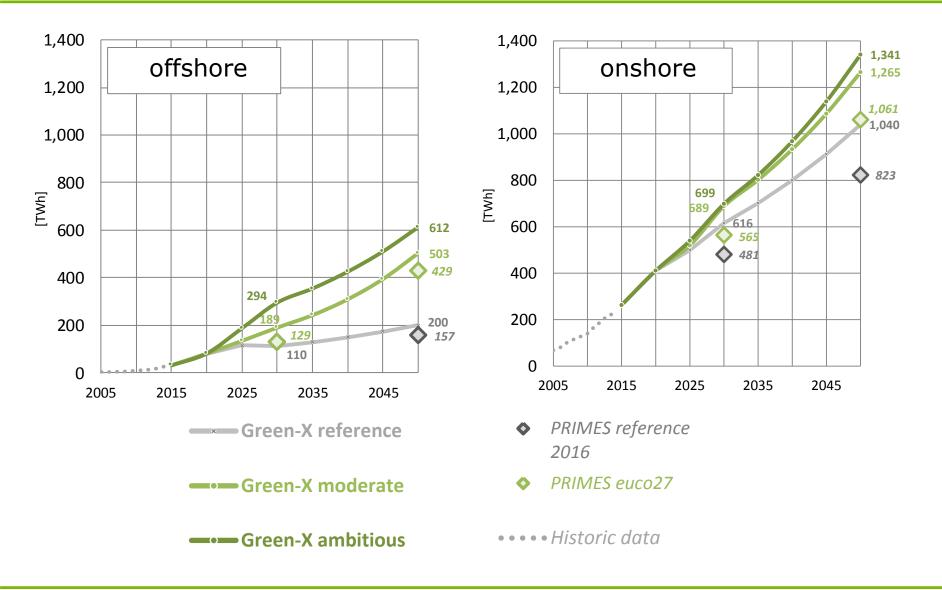
> 1 January 2015 – March 2016

Early deliveries

- > Task 1: Grid integration and system optimization
- > Task 2: Options for a strategy for cost reduction

Stakeholder consultation


- > A range of stakeholder representatives was consulted during the project
- > Presentations to EWEA, UK OWIC, and during ENTSO-E


Reliable Sustainable Connected

Installed capacities are likely to rise strongly until 2030 (and after) >50 GW offshore, >280 GW onshore

Wind energy may deliver a quarter of electricity demand in EU by 2030

43

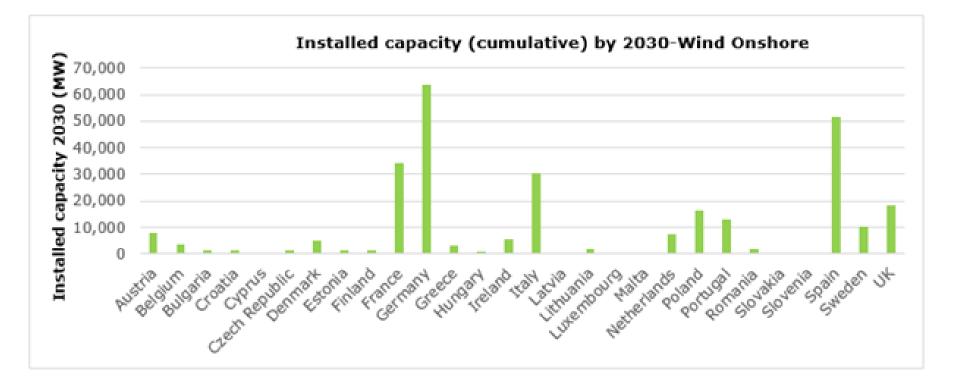
Evolutionary technological progress will result in cost reductions – at least 15% onshore and up to 30% offshore

Levelised cost of energy (€/MWh)

for different representative projects (including grid connection)

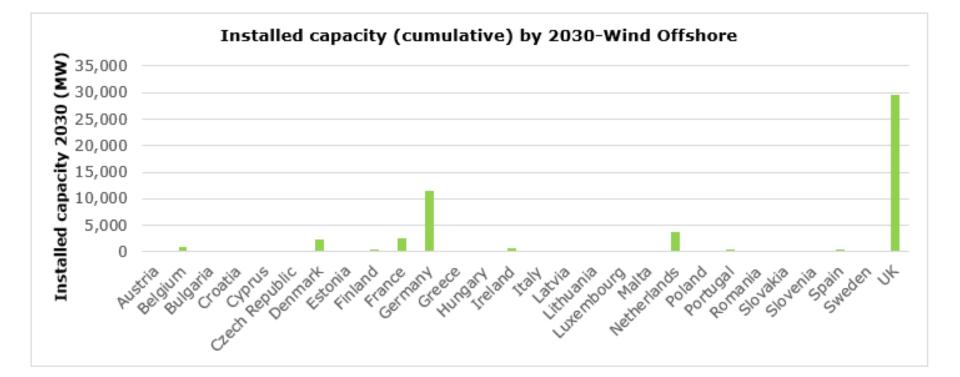
			Innovations included:		
Onshore			None	т	echnical
А	High wind		68.3		59.4
В	Low wind		97.4		84.8
С	Spatially constrained (medium))	75.3		64.9
D	Repowered (high wind)		64.2		55.8
Е	Remote & complex (medium)		103.9		89.7
	Innova		tions included:	ded: Borssele I & II	
Of	fshore	None	Technical	Winning bid	+ technical innovations
А	22 km, O&M land-based, HVAC	131.5	112.3		
В	40 km, O&M land-based, HVAC	130.2	92.7	88.0	60-65
С	80 km, O&M offshore, HVAC	139.6	99.2		
D	120 km, O&M offshore, HVDC	148.5	106.9		

Recent cost reductions for offshore wind arose primarily from system innovations


- Competitive subsidy scheme (auctions) reducing contract margins and lowering bid price, and as a result;
 - Impact on all equipment supply and installation costs
 - Sharper requirements on the rates of return on equity
- > Reduced financing costs due to reduced interest swap rate
- > Reduction in duration of project development phase due to one stop shop approach and streamlining of administrative issues during planning and permitting
- > Better understanding of project risks due to increasing experience
- > Reduced insurance costs
- > Reduced steel pricing
- > Third party WTG O&M resulting in reduced operating costs

Rationale

- > Continue to support long term policy framework
- > Strong governance and monitoring
- > Master Plan 2030 including a proposal for national and regional targets
 - Guidance for national energy and climate plans
 - National and regional targets / commitments to
 - Make optimal use of existing resources
 - Reduce inconsistencies
 - Generate certainty
 - Facilitate planning new capacity


ONSHORE capacity by Member State 2030

In an ambitious scenario onshore capacity would not be much larger.

OFFSHORE capacity by Member State 2030

In an ambitious scenario in particular DE and UK offshore capacity would increase (to resp 17 and 51GW).

Planning offshore

EC ensures a regional perspective is held up, coordinate planning among Member States and ensure engagement across borders and economic offshore sectors

Planning onshore

- > Environmental concerns are key \rightarrow ensure a balance between distance requirements and safeguard of wind power potential.
- > Consider using property from national government
- > Coordinate across national and municipal borders

Permitting

- > Develop European guidelines for national permitting procedures, as was done for network infrastructure under the TEN-E regulation
- Consider harmonized minimum standards for siting, spacing and noise, while allowing for stricter regulations if justified

Environmental Impact Assessment

- Promote timely public engagement in future updates of EIA, SEA, Habitats Directives to increase confidence in outcome
- > Evaluate if the Cumulative Impact Assessment should be elevated from the individual project to the strategic level

Lifetime extension

- > Develop improved methods for assessing remaining lifetime, and establish guidelines and standards for lifetime extension, to reduce costs
- > Consider a dedicated lifetime-extension support scheme

Repowering

- > Require Member States to inventory potential sites for repowering to optimize re-use
- > Developing a guideline for repowering to advance harmonization

Decommissioning

> Harmonize requirements for decommissioning wind capacity reaching end of lifetime

Support schemes

- > Highlight best practice examples and lessons learnt from national support schemes
- > Foster institutional innovations that may help to reduce costs
- > Consider promoting multi-national support schemes, e.g. through pilots
- > Investigate if financial support schemes could target lifetime-extended capacity

Levering / reducing capital expenditures

- Consider supporting anticipatory investments for offshore wind, e.g. using the European Fund for Strategic Investments (EIB/EC)
- Consider establishing a cost reduction facility to limit policy risks and reduce WACC – EU institute refunds payments if national policies are withdrawn retroactively

- Market design and service remuneration are important to provide ancillary services (frequency stability, black-start capability, voltage control)
- > Technical implications of fully inverter-based power systems need to be investigated in depth
- > Collaboration for offshore grid connection is vital for bringing down costs, achieving sustainability targets and promoting economic growth
- > Grid codes should be aligned to current and future system needs, harmonized and technology-neutral

52


Standardization

- Facilitate the establishment and moderation of a working group on standardization for the wind sector, with representation from Member States and industry
- Promote standardization in the wind sector by fostering partnerships that bring in new actors from other (offshore) sectors

Non-technological barriers

Complementary to national and EU regulations, these could be addressed by RTD on

- > technology developments and innovations that reduce environmental impacts.
- European recycling routes for decommissioned wind turbine parts, especially for composite materials
- > the relationship between local acceptance of wind capacity versus specific landscape attributes and wind farm characteristics.
- > public participation as a factor for increasing local acceptance
- > immature technologies that strengthen the flexibility of the energy system (ex. energy storage technologies), as well as optimum deployment of system friendly wind technologies.

Priority RTD topics by key area

- > Many topics are relevant but less suitable for EU funding (intellectual property)
- > For some topics collaboration is more important than extra research

Wind turbines & components	Offshore technology	Resource assessment & spatial planning	Grid integration
Methods and standards	Methods and standards	Methods and standards	Market design and frequency stability
	Modelling techniques & design	LCoE and social impact	Fully inverter-based power systems
	Lifetime extension, decommissioning	Site assessment and planning	Offshore grid connection
	Floating	Environmental impact	
		Smart wind farms	
		End-of-life strategies	

Test facilities

- Support research into more advanced and realistic methods and standards for testing wind turbine blades, as well as a baseline of methods and a first standard for testing nacelles, and ensure close cooperation and exchange between the test facilities.
- > Consider funding an European offshore wind test field to lower the entrance barrier for new methods and products into the offshore wind market and increase the cooperation between the European test facilities.
- > Fund initiatives between European test facilities to promote one European point of view when global standards are developed.

sustainable energy for everyone

Contact:

Heleen Groenenberg

h.groenenberg@ecofys.com

sustainable energy for everyone

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

Meeting dates in 2017 and AOB

Secretariat suggest:

- 20 March 2017 in Bruxelles (one week after ETIPWind AG meeting);
- 20 June 2017 in Bruxelles (during European Sustainable Energy Week)
- 14 and 15 September 2017 in Bruxelles (dinner 14 September, meeting 15 September)
- 28-30 November 2017 in Amsterdam (during WindEurope Annual event).

EUROPEAN TECHNOLOGY & INNOVATION PLATFORM ON **WIND ENERGY**

Thank you

Edit Nielsen, Content Coordinator for R&I activities – edit.nielsen@windeurope.org Aloys Nghiem, R&I analyst & technical content developer – aloys.nghiem@windeurope.org